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CHAPTER 1: INTRODUCTION 

Molecules are increasing in complexity in order to gain a wide variety of 

functionality useful for many applications. Many challenges accompany these increasing 

complexities, particularly synthetic challenges.  Old synthetic methods often have to be 

used in innovative new ways to gain success. Increasing chemical complexity, and 

meeting the challenges of higher difficulty synthesis, has the potential for exciting and 

rewarding payouts.   

Chemical machines or molecular machines are a class of molecule, often with 

many complex “moving” parts that have high functionality.1-5 Like a mathematical 

function, a chemical machine has the ability to transform an input into an entirely 

different output. In the case of chemical machines, this is usually through a quasi 

mechanical movement that are easy to imagine in a macro-world and that often emulate 

the form of macro machines.6 The ability of chemical machines to do complex tasks 

makes the challenge of difficult target molecule synthesis one worth pursuing. 

One example of a chemical machine is a chemical amplifier.  These chemical 

amplifiers are structures that translate a single bond-breaking event into release of 

numerous chemical outputs. In this way, a single bond cleavage input reaction (e.g. a 

reaction triggered by an analyte, a photon, or an enzyme) can be translated into the 

release of numerous output chemical cargoes.7-11 Outputs can take the form of reporting 

molecules (e.g. fluorescent dyes), biomolecules, or drugs. This kind of chemical amplifier 

has numerous applications in chemical sensing, in drug delivery and a variety of other 

highly sophisticated tasks, especially when combined with other chemical functionalities 

as part of increasingly complex chemical machines. 
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We investigated a chemical amplifier based on hexaesters of mellitic acid.  This 

class of molecule is difficult to synthesize and transform, requiring a variety of 

techniques.  Because of the synthetic challenges, careful selection of a target was 

investigated. A self-immolative linker system, based on anhydride formation of a 1,2 

carboxylic acid of a six member ring, was chosen to be the target of interest because of a 

number of reasons: benign byproducts, availability of starting materials, and kinetics of 

release. An unprecedented oxidative aromatization was used to synthesize these mellitic 

acid hexaesters.   
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CHAPTER 2: OXIDATIVE AROMATIZATION 

Introduction: 

 In the course of attempting to synthesize chemical amplifiers, several unexpected 

synthetic challenges were encountered.  Most notably, direct esterification of mellitic 

acid proved difficult.  Although mellitic acid could be esterified to the hexamethyl ester 

derivative using standard ester coupling reactions, in the case of esterification with 

phenols dozens of coupling conditions were unsuccessfully attempted.  To overcome the 

synthetic difficulty of a direct esterification, we considered a synthetic approach 

involving synthesis of non-aromatic esters that could then be transformed to the desired 

aryl esters.  One approach that we considered was to esterify cyclohexane hexacarboxylic 

acid, and then aromatize the aliphatic cyclohexane ring to the heavily substituted 

benzene.  However, no such reaction exists in literature. 

 

 

 

 

 

 

  

Aromatization of a cyclohexane is not a trivial transformation often requiring 

expensive catalysts or electrochemical techniques, and, because of expense, is not 

suitable to larger scale synthesis and lack of diversity of substituents that can be attached 

Figure 1: Mellitic acid direct esterification attempts, all of which 
proved unsuccessful, when R=an aromatic ring or system. 
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to the ring.12 We found that if the molecule is sufficiently substituted with certain 

carboxylate groups, however, the cyclohexane can be oxidized to the aromatic derivative 

on treatment with phosphorus pentachloride.  Depending on work-up conditions, 

aromatic esters or aromatic carboxylic acids could be prepared in this fashion. Initial 

investigations and intuition lead us to believe that the reaction is undergoing a Hell-

Volhard-Zelinsky (HVZ) type reaction to form alpha halogenated compounds.  After 

halogenation, the molecules can undergo beta elimination to generate the aromatic 

compound. 

The HVZ reaction prepares alpha-halogen carboxylic acids and has been well 

known for over a century.13-15 Since, in the traditional variation of the HVZ reaction, an 

alpha-halo acyl halide intermediate is generated, alpha-halo esters, thioesters or amides 

can readily be prepared through this route.16  In general, the HVZ reaction requires 

relatively harsh conditions with temperatures in excess of 100 °C and long reactions 

times.17, 18 Elimination happens fairly readily following the halogenations, particularly at 

higher temperatures.19 That makes this particular technique attractive for highly 

functionalized aromatic esters synthesis.  However, no literature precedence exists for use 

of the HVZ reaction, followed by same pot elimination, in order to create aromatic 

molecules. 

 

 

 

 
Figure 2: A traditional HVZ reaction scheme 
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Computational Methods: 

In order to gain insight into the feasibility of the elimination reactions that might 

occur following alpha halogenation, computations were carried out to assess the pKa 

values of the cyclohexane haloesters.   

All the molecular geometries of the electronic states of all molecules were 

optimized under the DFT level of theory using the B3LYP functional and the 3-21+G* 

basis set.20   The stationary points were found to have zero imaginary frequencies, and all 

energies contain a correction for the zero-point energy. All the single-reference 

computations were computed with Gaussian03/09.21  The hybrid B3LYP functional used 

consists of the Becke 3-parameter exchange22, 23 functional with the correlation functional 

of Lee, Yang, and Parr 24.   This and related DFT functionals have been shown to give 

quite reasonable geometries for ground state molecules.25-27 A polarizable continuum 

model (PCM) was used to approximate solvent conditions in DMSO.  

The pKa calculations followed the proton exchange or relative method. The 

general approach of the proton exchange scheme is to consider some acid/base reaction 

with a reference molecule.28 The relative pKa values used were in DMSO and set to 

pyridine/ pyridinium acid/base pair.  Choosing pyridine as the reference base may, 

however lead to some degree of error because it is a nitrogen based base compared to the 

carbon acids that we are investigating. Furthermore, since the majority of reactions were 

done in aprotic solvents, explicit molecule shells were not considered. However, an 

advantage of the relative method is an inherent cancelation of errors that makes this 

approach reasonable. 
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The pKa could be calculated by the Gibbs free energy equation shown in Figure 3. To 

calculate pKa the following relations were applied: 

 

 

 

 

 

Final pKa calculations are based on the following modification of equation 3: 

 

 

Where c1 is the slope of the standardized pKa graph (figure 3) and c2 is the experimental 

value of the pKa of pyridine in DMSO.  By plotting several molecules with known pKa’s 

we can get not only the c1 and c2 values, but also an idea of the accuracy of this method.  

The r2 value of our data (0.9949) with a wide variety of carbon based acids give a good 

Figure 3: The thermodynamic cycle considered for the relative method of 
determining pKa 

2.2 The proton exchange method

Given the above problems, the proton exchange method
shown in Scheme 2 (also known as an isodesmic method or

a relative pKa calculation) is considered more reliable

because the number of charged species is conserved on
both sides of equation thereby allowing for cancellation of

some of the errors incurred in a continuum solvent calcu-

lation. Additionally, this approach also allows for further
cancellation of errors in the gas-phase reaction free energy,

especially when lower levels of theory (e.g. HF or DFT
methods) are employed. The pKa is obtained through Eq. 5

pKa ¼
DG"soln

RT lnð10Þ
þ pKaðHRefÞ ð5Þ

where the experimental value of the reference acid, HRef,
is used. This approach also does not require an experi-

mental value of DG"solvðHþÞ, which as discussed above, is a

potential source of systematic error. Referring again to our
earlier work, we found this approach significantly more

accurate and delivered pKa values of various carbon acids,

including acetamides, ketones, amines and small peptides
that are within 1 unit of experiment (cf. 7 units in the direct

method) [82]. In particular, this approach provides a useful

comparison with the direct method and increasingly, the
two approaches are being used together in the pKa calcu-

lation of various acids [52, 63, 72, 80, 84, 95–101] in

aqueous and organic solvents, with generally good results.
Unfortunately, the success of this approach can depend

heavily on the choice of reference acid, with best results

expected if HRef is structurally similar to HA, since the
errors incurred by the continuum solvent model are likely

to be very similar and therefore should mostly cancel from

DDG"solv. To a certain extent, this depends on the solvent
model used to evaluate the solvation energies. We found in

the pKa calculation of neutral carbon acids of various

functionalities that the CPCM-UAKS model worked par-
ticularly well using this scheme because the errors in this

model are more systematic compared with the other solvent

models examined [82]. Of course, the accuracy of the
calculated value also depends on the accuracy of the

experimental pKa of HRef. As a consequence, since accu-

rate experimental pKa values of a structurally similar

reference may not always be available, this may limit the
proton exchange scheme as a universal pKa calculation

method.

2.3 Hybrid cluster–continuum approaches

In this light, reference-independent methods that can deli-
ver moderately accurate pKa values are highly desirable.

Some success in this direction has been achieved through

the inclusion of explicit solvent molecules in the acid
dissociation process. There are several variants to this

approach including the cluster–continuum model [53, 97,

99, 102–105] (Scheme 3) and the implicit–explicit solvent
approach (Scheme 4) [106].

Pliego and Riveros have utilized Scheme 3 in combi-

nation with the IPCM solvent model to obtain pKa values
that are accurate to within 2 units for a small test set of

acids [103]. The pKa is obtained via Eq. 6

pKa ¼
DG"soln

RT lnð10Þ þ 14þ ð4& nÞ log½H2O( ð6Þ

As noted in Table 1, using a standard state of 55 mol/L
corresponds to a pKa of 14 for water as compared to the

commonly quoted value of 15.74 which differs by a factor

of log[H2O]. Thus, for consistency, this experimental value
is adopted in Eq. 6. Scheme 3 is somewhat similar to a

proton exchange scheme using water as a reference.

However, it is strictly speaking not a proton exchange
reaction because the number of moles of chemical species

is not always conserved on both sides of the equation. Of

course, in cases when n = 3, i.e. when the anion is solvated
by three water molecules, then Eq. 6 collapses to Eq. 5

with an additional log[H2O] correction term, and HRef in

this case is water. The number of water molecules (n) to
include in an ion cluster, is determined using a

‘‘variational’’ cluster–continuum approach for solvation

free energy calculations, as shown in Scheme 5. In this
approach, the solvation of ionic species DDG"solvðA)Þ
corresponds to the free energy of the following process:

A)ðg,1 M)þ nH2O(55 M, l)! A)ðH2O)nðaq, 1 M)

DG"solvðA
)Þ ¼ DG

*

clusðAðH2OÞ&n Þ þ DG"solvðAðH2OÞ&n Þ
þ nDGvapðH2OÞ ð7Þ

HA(aq, 1M)      +        Ref-(aq, 1M)                                HRef(aq, 1M)      +       A-(aq, 1M)
∆G*

soln

∆G*
gas

−∆G*
solv(HA) ∆G*

solv(HRef) ∆G*
solv(A-)

HA(g, 1M)        +        Ref-(g, 1M)                                  HRef(g, 1M)        +       A-(g, 1M)

−∆G*
solv(Ref-)

Scheme 2 pKa calculation via
the proton exchange scheme.
HRef is the reference acid

8 Theor Chem Acc (2010) 125:3–21

123

(1) 

(2) 

(3) 

€ 

pKa =
ΔGs

RT ln(10)  
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indication that our method is valid.  The plot below uses the reference molecules of: 2, 4-

pentadione, propane, 2-methylpropane, phenol, acetic acid, benzoic acid, cyclohexane, 

cyclohexanone, propene, 1,4-pentadiene, cyclopentane, hydrochloric acid, nitrous acid, 

and p-nitro benzoic acid primarily using the acidities compiled by Bordwell in DMSO.29 

The results of these pKa studies are listed below in the “pKa results and discussion” 

section. 

 

 

 

 

 

Experimental: 

HVZ aromatizations are still being optimized but below are shown conditions that 

give the listed product: 
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General procedure for synthesis of benzene derivatives: 

To the carboxylic acid or ester substituted cyclohexene was added phosphorus 

pentachloride (equivalents dependant on number of functional groups) and the reaction 

was heated to 120-140 °C for 1-4 hours. Alcohol or water was added in large excess to 

give either the carboxylic acid or ester.  Pyridine was added dropwise until formation of 

pyridinium chloride salt was no longer observed. Typical work-up of esters was dilution 

with methylene chloride and washing with copious water.  Concentration of organic layer 

gave a solid suspended in viscous oil in most cases. Filtration with a fine borosilicate 

glass fritted filter followed by recrystalization in THF/hexanes yielded pure product. For 

full synthetic procedures, see chapter 7. 

Results and discussion: 

The compounds shown below, in figure 5, were all successfully synthesized by 

the oxidative aromatization method, although not all of them have been purified in good 

yield; as of yet, structural determination is limited solely to 1H-NMR. This set of 

reactions begins to probe at the overall diversity of this reaction.   
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Starting Material Acid workup Alcohol Workup 

 

 

  

 

 

 

  

 

 

 

 

  

 

 

 

The key to our reaction scheme is the source of chlorine.  Esterifications of the 

cyclohexane carboxylic acids investigated in this experiment could be done by first 

producing the acid chloride with thionyl chloride, but with this reagent, no aromatic 

product was formed.  However, when an excess of PCl5 is used, some aromatic product is 

formed.  In fact, even when 1 or 2 equivalents amount of PCl5 is used, some aromatic 

product is formed, although yield suffers. It is known that PCl5 exists in equilibrium with 

PCl3 and chlorine at higher temperatures.30 The supposition of the source of chlorine 

being from the PCl5 is consistent with our finding that, in most cases, temperatures in 
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Figure 5: Successful oxidative aromatization performed so far. The 
alcohol work-up can yield either aromatic or aliphatic esters. 
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excess of 120 °C are required for this reaction to proceed.  However, temperatures in 

excess of 140 °C seem to cause some unwanted degradations, so increasing the 

temperature beyond this point does not give greater yield.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The dimethyl phthalate that was synthesized with our oxidative aromatization did 

show some product yielded with temperatures never exceeding 90 °C, but this reaction 

seems to be the exception and our intial investigations indicate that yields are higher at 

120 °C than 90°C. Even though the cyclohex-4-ene-1,2-dicarboxylic acid did react with 

PCl5 at room temperature, the esterification gave no aromatic product under these 

conditions.  For the hexacarboxylic acid cyclohexane derivative, the reaction with PCl5 

did not take place until 120 °C, so it is difficult to draw conclusions on the effect of lower 
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temperatures on the reaction, but so far it appears that higher temperatures give more 

favorable results up to degradation temperatures. 

 Phosphorus oxychloride (POCl3) is a side product of the reaction that was 

intentionally not distilled off before addition of alcohol or water.  On addition of water, 

the phosphoryl chloride reacts and becomes phosphoric acid, which is easily removed.  

On addition of alcohols, when the ester products are desired, a phosphate ester is 

produced.  This phosphate ester is useful in the work-up since the product is insoluble in 

the phosphate ester oil, which was yielded on concentration of methylene chloride. This 

makes filtration a viable and easy purification at the end of the reaction. 

 

 

 

 

 

 

 

 

 

Optimizations are currently being done focusing on the 1,2,3,4,5,6 hexacarboxylic 

acid cyclohexane because this has the most potential utility for use as an amplifier.  Thus 

far, the only phenols that have been used to successfully create the hexaester have been 
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Figure 7:  Possible scheme for oxidative HVZ reactions to form 
esters. 
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phenol and p-methoxy phenol. Aliphatic esters have been shown to be able to be 

synthesized using the oxidative aromatization as well, however. 

Mellitic acid can be reacted with phosphorus pentachloride at very high 

temperatures to yield the acyl chloride. On addition of the alcohol or alcohol/catalytic 

pyridine, however, the ester is not produced.  This suggests that the esterification happens 

before the elimination of the chloride as shown in Figure 7.   

It is possible that the reaction is not solely undergoing HVZ for chlorination.  If 

the hexaester of the saturated cyclohexane is treated with PCl5 and subjected to high 

temperatures, for an extended period, some aromatic product is formed.  It could be that 

the chlorination can proceed through a radical mechanism, since HVZ type halogenation 

is unlikely with the ester (see pKa study below).  These yields are low, however, and 

require even harsher conditions (140-180°C and 12 hours).  Therefore we do not believe 

that this is the predominate pathway, but rather a competing reaction. 

 

pKa results and discussion:  

The pKa data was computed as described above and this data are summarized in 

Figure 9.   Given the low computed pKa’s, it seems reasonable to expect that elimination 

can happen readily with even fairly mild conjugate bases. Obviously, the deprotonation 

barrier of the beta hydrogens are important for rate of elimination and for determining 

under what conditions the elimination will happen. Less obviously, the low pKas are 

important for understanding the initial halogenation.  If HVZ halogenation happens to the 

enolate form of the carboxyl derivatives, having fairly acidic protons indicate low 

barriers for the tautomerization.  This is why it is generally accepted that the HVZ 
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pKa 
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reaction happens more readily with the acid chloride than with the ester or carboxylic 

acid.31 Since our system is particularly acidic, the enol formation must also be 

investigated and such studies are forthcoming. 
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significant axial strain that is being relieved by the deprotonation.  This is in keeping with 

experimental results of epimerization being rapid in the case of the hexasubstutited 

cylohexanes.  Unsurprisingly, the more unsaturated the compound is, the lower the pKa’s 

are.  A possible consequence of this is that the reaction may be accelerating toward 

aromatization.  Therefore, even if the initial halogenation of the HVZ may be disfavored, 

this reaction may proceed anyway, especially since we expect the aromatic product to be 

significantly more stable. 

 

Conclusions: 

Several ester substituted aromatic compounds were synthesized and characterized 

by NMR and mass spectrometry to show the successful oxidative aromatization.  The 

HVZ mechanism, followed by elimination is consistent with our results and is thus the 

suggested mechanism, although further computation detail should be considered for a 

more conclusive reaction scheme and mechanism.  Most of these reactions are low 

yielding, so the synthetic utility is limited to situations where synthesis would otherwise 

be difficult.   

The phenolate esters were not able to be prepared from the direct esterification of 

mellitic acid, showing the HVZ aromatization to be useful for creating highly esterified 

benzene derivatives. This is particually useful for our purposes of synthesizing our 

amplifier.  The scope and limitations of this reaction are still being investigated with 

particular attention being paid to increasing reaction yields. 
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CHAPTER 3: SELF-IMMOLATIVE CHEMICAL LINKER 

Introduction: 

Many properties of pharmacological drugs can be improved with the careful 

implementation of proper drug delivery systems.32 One area where improvement could be 

used is the chemical linker by which the payload is delivered.33 The ideal chemical linker 

should have a switch that, when activated, releases a chemical payload or cargo and meet 

certain criteria for practical use.34  For our purposes, the linker is subject to the following 

criteria: kinetics faster than those previously reported (τ<1 hour), stable in water for long 

enough for the payload to be delivered (τ>1 day), with benign byproducts, and a synthetic 

scheme that would allow for placement of drug or reporter molecules as a payload.  

Proper selection of the chemical linker could then be used in more advanced molecules 

and molecular machines, such as a chemical amplifier. 

Self-immolative linkers have become indispensible molecules for connecting a 

cleavable mask to an output cargo molecule.35-37 Upon an input reaction that cleaves the 

mask, self-immolative linkers release their output cargo, and the molecule “self-

destructs” into harmless byproducts. Self-immolative linkers have proven to be extremely 

useful in enzyme-activated prodrugs,38-43 chemical sensors,44-46 traceless linkers,47-50 

biological probes,51-54 and degradable polymers.55-57 Released chemical cargoes are often 

biomolecules, drugs, or reporters such as fluorescent dyes. Linker structure can aid 

prodrugs by improving stability, solubility, biodistribution, pharmacokinetics, 

bioavailability and activation. 
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The ideal self-immolative linker is simple, stable, compatible with water, and 

transforms into a benign byproduct upon releasing the output cargo. Furthermore, such 

linkers should be easy to synthesis, readily adaptable to a variety of inputs and outputs, 

and quickly release the output cargo upon the input reaction. In particular, some common 

self-immolative linkers suffer from slow release of their output cargo. New linkers that 

incorporate these desirable features would be highly useful. 

Experimental: 

Phenyl hydrogen phthalate, was synthesized according to a known procedure.58  

Synthesis of both cis and trans- 2-((p-methoxyphenoxy)carbonyl)cyclohexanecarboxylic 

acid and p-methoxy phenyl hydrogen phthalate were prepared by adapting the method 

described in literature.58  Phenyl hydrogen phthalate and p-methoxy phenyl hydrogen 

phthalate had 13C-NMR and 1H-NMR in good agreement with literature values.34  The cis 

and trans cyclohexane 1,2 p-methoxy phenolate carboxylate had 13C-NMR and 1H-NMR 

in good agreement with expected values. For full synthetic procedures, see chapter 7. 

Kinetics: 

Kinetic experiments were performed using the Agilent 8453 UV-Visable 

spectrometer and plotted using Kaleida graph vesion 4.1.1 plots were fitted to find the 

rate constant (k) or 1/k=τ.  Phthalic anhydride was monitored at 300 nm, phenol was 

monitered at 270 nm and p-methoxy phenol was monitored at 285.  All studies were done 

at 10 mM concentrations in phosphate buffered solutions prepared with ultra pure water. 
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Computational methods: 

All the molecular geometries of the electronic states of all molecules were 

optimized and transition states were found under the DFT level of theory using the 

B3LYP or M06-2X functionals and the 3-21+G* or 6-311++G* basis set.20 The 

stationary points were found to have zero imaginary frequencies, and all energies contain 

a correction for the zero-point energy. All the single-reference computations were 

computed with GAMESS suit.21  The hybrid B3LYP functional used consists of the 

Becke 3-parameter exchange22, 23 functional with the correlation functional of Lee, Yang, 

and Parr. 24   This and related DFT functionals have been shown to give quite reasonable 

geometries for ground state molecules.25-27 The M06-2X is a meta hybrid GGA functional 

with double exchange energy (54% hartree fock exchange energy) that has been shown to 

be a very good functional for main group elements and kinetics. Polarizable continuum 

model (PCM) was used to approximate solvent conditions in water. Further solvent 

approximations were attempted but were too computationally expensive to be studied to 

satisfaction. 

Results and Discussion: 

There are three parts to the selected linker: the trigger, the base system, and the 

payload released. The phenyl hydrogen phthalate has been shown to be a good candidate 

for a system and is the metric to which other linkers are compared.   Shown below is the 

proposed mechanism, that was computationally investigated.  pH was considered by 

protonating in logically consistent ways for neutral pH systems. Given this mechanism, 

we would expect, and we observe, a pH dependence on the system.   
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Cargo: 

The ultimate payload release should have some sort of functionality or emulate 

some functionality. However, for our purposes of a proof of concept study, any alcohol 

that is easily observable and that demonstrates appropriate kinetics could be considered.  

Aliphatic alcohols were for the most part not extensively explored because of the known 

slow reaction times, even in the hydrogen phthalate case.59  Molecules useful for 

chemical sensing, such as coumarin and coumarin derivatives have been shown to be 

appropriate, particularly in the hydrogen phthalate case34, but are not discussed here.  In 

particular, phenol and the phenolic derivative p-methoxy phenol were used.  Phenol 

serves as a good analogue because several drugs contain a phenolic alcohol group that 

could be used as the esterified alcohol in our linker system.  P-methoxy phenol was used 

Figure 1: Reaction mechanism for carboxylate assisted release of alcohol 
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to show that even with some electron donating character (which we expect to, and was 

observed to, slow down the reaction), phenolic esters could still be useful. 

 After synthesis of p-methoxy phenolate hydrogen phthalate and phenyl hydrogen 

phthalate, the two alcohols could be compared for potential use.  In the p-methoxy phenol 

case, a UV-wavelength of 285 was selected because it is conveniently far from any other 

species’ wavelength, thus the kinetic plots show only growth that corresponds to the 

alcohol.  The anhydride formation was not observed because, unlike the aromatic case, 

the aliphatic cyclohexanes do not strongly absorb UV-light.  For the phenol case, phenol 

has a UV-spectrum that overlaps with the phthalic ester, therefore the formation of the 

anhydride was the species observed, as the anhydride absorbs at a sufficiently different 

wavelength than any other species.  Thus we can see the release of phenol (growth in the 

plot corresponding to the formation of the anhydride) and the anhydride ring opening to 

the pthalic acid (decay of the curve).  

In both instances it can be shown that the release is pH dependent.  For both 

phenol and p-methoxy phenol, neutral pH (7.0 phosphate buffer) showed faster kinetics 

for release of the payload than lower pH (5.1 phosphate buffer).  This is consistent with 

the computational data observation that the protenation accompanied with a lower pH 

raises the barrier of activation. In the case of the phenol, the release of the alcohol was so 

fast that we were unable to observe the kinetics at neutral pH, only the reopening of the 

anhydride was observed. Unsurprisingly the p-methoxy phenol was slower than the 

phenol, as ether groups (the para substituted methoxy) are electron donating, thus 

destabilizing the released phenolate. 
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It should be noted that amide linkers were investigated.  However, amide linkers 

are slow to release the amine payloads at neutral pH.  In very acidic conditions, (such as 

those that might be found in the stomach), the release kinetics were much faster.  For the 

purposes of our chemical amplifier, the amide was not further considered since we 

deemed it to be unsuited to our criteria of appropriate kinetics at neutral pH.  However, 

for other applications, amides may be considered, especially in the context of a pH 

sensitive linker. 

Base system: 

The hydrolysis of hydrogen phthalate is a classic case of neighboring group 

participation. The phenyl hydrogen phthalate has particularly been extensively 

investigated because of its fast kinetics of release in water at neutral pH, the mechanism 

of which has seen previous investigation.60-63 It is also shown that the mechanism is pH 

dependant, such that the phenyl hydrogen phthalate is a shelf-stable compound when 

stored away from moisture, but this compound hydrolyzes rapidly in water at neutral pH. 

We discuss a more generalized case of the phthalate system with different chemical 

payloads and bases, as it pertains to potential use in further functionalized systems. It has 

been determined that the fast ester hydrolysis of this compound is a case of 

intramolecular catalysis wherein the neighboring carboxylate group displaces the alcohol 

to generate a water-unstable anhydride that in turn spontaneously hydrolyzes to phthalic 

acid. These factors make the phthalate system ideal for the fast release of a chemical 

payload in further functionalized systems. 

Although the phthlalic acid system is a good candidate because of its kinetics, 

increasing the number of carboxylate groups on the ring system makes the aromatic base 
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system difficult to work with and transform because of the complex electronic and steric 

environment involved.  A number of unpublished experiments were done demonstrating 

this fact, even with as few as three carboxylate groups.  Because of this, cyclohexane-1,2-

dicarboxylic acid was investigated for potential use in both the cis and trans forms. 

 We identify our target kinetics to have tau values of less than 1 hour at room 

temperature and under neutral conditions in order to be competitive with other published 

amplifiers. In the case of the trans base, the tau values were so high as to be difficult to 

obtain accurately in the timeframe we investigated for the p-methoxy phenol.  When a 

better leaving group of phenol was used, the tau value was still 15,625 s-1 (see figure 2). 

Given this, it was determined that the trans-cyclohexanes carboxylic acid would be poor 

candidates for linkers since these values fell outside of the range of interest.  The high tau 

values are likely a result of the trans-five member ring junction that would be required for 

the neighboring group participation required to kick off the phenolic alcohol. 

The cis cyclohexane dicarboxylic acid was also investigated for potential use as a 

linker.  The all cis-cyclohexane hexacarboxylic acid is commercially available and can be 

esterified through simple Fischer esterifcation methods, making it a convenient candidate.  

Additionally, the model studies conducted were promising from a kinetics point of view. 

The tau value of the phenol was 127 s-1 and the p-methoxy phenol was 692 s-1.  Both of 

these values were with the acceptable range for kinetic, even though they were 

considerably slower than the hydrogen phthalate case.  Of concern is cis-trans 

epimerization with the cis cyclohexane carboxylic acid and its ester derivatives.  At 

neutral conditions and low heat, epimerization is slow, but at either basic or acidic 

conditions, epimerization happens more readily to the less sterically strained trans 
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cyclohexanes.  This is especially evident as the number of carboxylic acids on the ring 

increases.  For purposes of use as an amplifier, the cis bases system was not investigated 

for this reason.  

However, even though the cis base system may not be an ideal candidate for the 

use in an amplifier system, it may be useful for other applications. Particularly, if some 

binding event needs to happen before release, relatively slow hydrolysis-even after 

activation may be desirable.  For drug delivery systems, this may be especially important.  

Such application is currently being investigated. 

 

 

 

 

 

  

 

 

 

 

Figure 2:   UV plots of the trans phenol (left) and trans p-methoxy 
phenol (right).  Both are very slow, indicating that the trans may not 
be suitable for a base system. 
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Figure 3:  UV plots of the cis phenol (left) and cis p-methoxy phenol (right).  
Both are on a kinetics scale that makes them appropriate for use. 

Figure 4: UV plots of the phtalate phenol (left) and phthalate p-methoxy phenol 
(right)  Both are quick and very desirable for kinetics purposes. 
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The Trigger: 

Two triggers that have been previously investigated have been 2-(trimethylsilyl) 

ethanol (TMSE) and 2-nitro benzyl alcohol.34 The TMSE group is sensitive to the 

fluoride ion and the 2-nitro benzyl alcohol is sensitive to UV-light irradiation.  Both 

triggers have proven to be compatible with the phthalic system and the triggers are not 

further discussed here. These two triggers serve mostly as a proof of concept.  

 

 

 

 

 

 

 

Tau values (s-1) 

 pH7 Phthalic pH 7 trans pH 7 cis pH 4 Pthalic 

Phenol 2.4 125000 127 50 (pH 5) 

p-methoxy phenol 50.2 16000 692 114 

p-nitro aniline Very high Not measured Not measured 347 

Figure 6:  
Top: A TMSE trigger, activated by fluorine 
Bottom: A 2-nitrobenzyl alcohol trigger, activated by UV-light 
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Figure 5: A summary of the tau values of relevant kinetics (as determined by UV) in 
different pHs.  Other, amide linkers were also investigated but were too slow to 
measure over the indicated pH ranges 
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Conclusion: 

Using a fluoride-sensitive 2-(trimethylsilyl)ethyl ester group to mask the catalytic 

carboxyl group, in combination with phenolic cargos, we find that aryl phthalate esters 

can indeed be exploited as self-immolative linkers.  The saturated analogues of phthalic 

esters, cis and trans cyclohexane  carboxylic acid, were also investigated.  In the case of 

the cis, stability is an issue that must be considered when moving forward with more 

substituted ring systems.  In the case of the trans, we did find this system to have many of 

the criteria for a good linker, however, the kinetics made it less than ideal for 

investigation for more functionalized chemical machines, particularly chemical 

amplifiers.  

We show that these linkers can be synthesized easily starting from phthalic 

anhydride or cis and trans cyclohexane anhydride, cheap convenient starting materials in 

the manufacture of plastics, and “self-immolate” to ultimately yield biologically benign 

byproducts upon release of the phenolic outputs. 
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CHAPTER 4: SELF-IMMOLATIVE CHEMICAL AMPLIFIERS 
 

Introduction: 
 

A single molecule containing multiple functionalities is nothing new in chemistry.  

Total synthesis groups have been creating just such molecules for just about as long as 

the field of synthetic organic chemistry has existed.64-66 However, using these 

functionalities in order to complete a specified task is still a field with many new exciting 

possibilities. One such possibility is the design of dendritic chemical amplifiers.  

Dendritic systems have been investigated for chemical amplification with some 

previous success.67-71 Unlike most dendritic systems that rely solely on the number of 

functional groups, dendrimers for chemical amplification also rely heavily on their 

structural relationship in order to undergo some transformation.35 This transformation can 

then be used to do some useful “work”.  We can therefore define these dendritic 

amplifiers as chemical machines capable of performing tasks such as chemical gating, 

signal amplification (taking one signal and transforming it into another, stronger signal) 

or drug delivery.35, 70, 72 

The existing systems studied are limited in scope of what they are able to release, 

as they require specific molecules to act as triggers and specific linking systems. We 

propose a proof of concept of an amplification system that can accommodate a variety of 

prodrugs and have precisely controlled kinetics of release.  Based on the discussion in 

chapter 3, we determined that mellitic acid with aromatic leaving groups as analogues for 

potential prodrug payloads with a single trigger attached would be the ideal target. 
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Mellitic acid provides several challenges as a base system, however, particularly 

synthetically.  Mellitic acid cannot be easily esterified, even with the use of common 

coupling reagents, because of complex electronics and high steric hindrance.33 Two 

techniques that have been shown to be successful in the synthesis of these systems are the 

cyclotrimerization of diester butynes and the previously discussed oxidative 

aromatization.73  Both the cyclotrimerization and oxidative aromatization synthetic 

methods are discussed below for use as potential amplifier synthesis pathways. 

 

Experimental: 

Syntheses of the benzene hexaesters were prepared via the oxidative 

aromatization as described in chapter 2.  Transesterifications were done under high 

pressure and with increased temperatures to give modest yields.  Cyclotrimerization was 

done catalytically with a bis-allyl ruthenium (IV) precatalyst that showed good tolerance 

for sterically hindered butyne diesters.73  Stoichiometric cyclotrimerizations were done 

Figure 1: Target molecule where R=H, OMe or NO2  
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with a zirconacyclopentadiene reagent using a modified literature preparation.74 For exact 

synthetic procedures, see chapter 7. 

 

Results and discussion: 

We were able to successfully synthesize the hexakis benzyl esters using two 

different methodologies, each with its own advantages. For the cyclotrimerization 

synthetic route, a dicarboxylate butyne would give the desired benzylic system.  This was 

successfully done in high yields to give hexakis (4-methoxy phenyl) benzene-1,2,3,4,5,6-

hexacarboxylate. Although the catalytic cyclotrimerization gave good yields and nearly 

pure product, (figure 2) they are limited by the fact that only the homosubstituted esters 

could be created, or at least with no selectivity in the hexaester system.  Using this 

method, it would be difficult to synthetically dictate where a single trigger molecule 

would be placed on our system without having multiple trigger substitutents . We have 

also shown that with a stoichiometric cyclotrimerization agent, selectable substituted 

benzenes hexacarboxylates could be synthesized (Figure 3). Unfortunately this synthetic 

pathway is limited by the dicarboxylate butynes synthesized.  So far the only dibutyl 

carboxylates synthesized are the methyl, ethyl, and p-methoxy derivatives. The synthesis 

of the dicarboxylate butynes is a several step synthesis, which makes creating a library of 

suitable compounds more difficult.  This reaction path does add possible versatility, 

however, and is still being investigated with different ester groups. 

Also considered was making benzylic ethers and then oxidizing to the appropriate 

esters.  Although the benzylic ether could be fairly simply synthesized by the William 



www.manaraa.com

 29 

O
OO

O
OMeMeO

Ru O
O

OO O
O

O
O

O OO
O

OMe

OMe

OMe

OMe

MeO

MeO

O
OO

O Zr
ZrO

O O O

O
O

O O

(issolatable)

O
O

O
O

CuCl

O
O

OO O
O

O
O

O OO
O

A

B

ether sythesis, the oxidation to the esters did not readily happen.  Again this indicates that 

the electronics and/or sterics of the hexa-substituted benzyl esters are complicated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As discussed in chapter 2, hexester systems could also be prepared by our 

oxidative aromatization technique.  Since this is a one pot synthesis, a wider variety of 

molecules could be synthesized much quicker than with the cyclotrimerization 

Figure 2: Catalytic cyclotrimerization demonstrating the ability of cyclotrimerization to 
produce sterically hindered hexaesters 

Figure 3: Cyclotrimerization using stoichiometric zirconium reagent that gives 
selective substitution 
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techniques.  Like the catalytic trimerization, however, selectivity is difficult in this 

synthetic pathway, without previously functionalizing our system. 
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The transesterification reactions were non-trivial due to the restrictive steric 

system and the complicated electronics that made the direct esterification of the mellititc 

acid derivatives difficult.  However, high-pressure systems have been shown to give 

moderate yields in sterically hindered transesterifications.75 Even with the high pressure 

and increased temperature, a labile leaving group was necessary.  The transesterification 

reaction failed with the hexkis (4-methoxy phenyl) benzene 1,2,3,4,5,6 hexacarboxylate, 

and provided only modest yields even with the high pressure transesterification of the 

phenolate derivative.  Further transesterification with better leaving groups (such as p-

nitrophenol or coumarins) are expected to give even higher yields.  
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Figure 5: Synthesis of the chemical amplifier 
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Additionally, the transesterification using the 2-nitrobenzyl alcohol photocage as 

the nucleophile proved unsuccessful.  It is conceivable that with a better leaving group, 

the transesterification may be done with the photocage, however, previously reported 

studies of sterically hindered transesterification showed difficulty with benzyl type 

alcohols.75  Otherwise, cyclotrimerization may be a viable alternative for obtaining 

amplifier systems with different triggers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To test the stability to unwanted hydrolysis of the hexaester, 10 mg of the hexakis 

4-methoxy phenyl benzene-1,2,3,4,5,6-hexacarboxylate was dissolved in 100 µL of 

dioxane.  10 µL of this solution was placed into 1 mL of D2O.  The D2O/dioxane solution 

was monitored by 1H-NMR for appearance of phenol.  The sample, in an NMR tube and 

Figure 6: Proposed scheme for synthetic route for 
cyclotrimerization approach to making chemical amplifier 



www.manaraa.com

 33 

without stirring, was kept in a 37 °C water bath between NMR runs.  No phenol was 

observed over the first 24 hours, demonstrating that the substrate is suitably water stable 

for our purposes.  A small amount of phenol was detected after 48 hours indicating a 

small, but acceptable amount of hydrolysis.  To help with solubility, the synthesis is 

being repeated with nitro groups added to the alcohol (eg. p-nitro phenol).  Adding the 

nitro groups should also increase the rate of kinetics.  Alternatively, with lower 

concentrations and purer product, kinetic studies could be done via UV-vis spectroscopy 

in a water/dioxane mixture. 
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Figure 7: Hydrolysis of the phenol hexaester after 48 hours at 37°C  in a 
dioxane/water solution (some chloroform impurity as well) 
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Studies testing the effect of the amplifier are currently ongoing.  However, 

initially studies seem to be promising.  The 1,2,3,4,5-pentaphenyl 6-(2-

(trimethylsilyl)ethyl) benzene-1,2,3,4,5,6-hexacarboxylate, synthesized by the 

transesterification method and with impurities, was dissolved in THF and subjected to 

tetra-n-butylammonium fluoride in order to activate the trigger.  After 1 hour the reaction 

mixture was placed in pH 7 phospate buffered water and reaction was monitored by UV. 

Release of phenol was nearly immediately observed by UV, on addition of the mixture to 

the water, indicating that our system retains the quick  kinetics of the model linker 

system. 

 

Conclusion: 

  Using our newly developed oxidative aromatization technique we were able to 

quickly synthesize several hexaester benzyl derivatives.  Using criteria that we laid out in 

chapter 3, and with the transesterification goal in mind, hexakis phenyl benzene-

1,2,3,4,5,6-hexacarboxylate was synthesized and transesterified with a fluorine sensitive 

trigger, which has been shown to work well with similar systems.34 Current work is in 

purification of the amplifier and studies that prove the amplifier effect.  After proving 

release on activation of a trigger, a variety of other alcohols, such as p-nitro phenol and  

7-hydroxy coumarin, could be considered.  These have better utility as reporter molecules 

because of their inherent fluorescence. 
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CHAPTER 5: CONCLUSIONS 

This thesis was designed to show the synthesis of a molecular amplifier and the 

process involved in said synthesis.  Special attention was paid to repurposing a well 

known reaction for new application, groundwork done to demonstrate a good linker 

system, and criteria for selection of the amplifier. 

Chapter 2 involved a discussion of the Hell-Volhard-Zelinsky reaction. 

Particularly an application of the HVZ reaction was explored where halogenation was 

followed by elimination in order to yield a substituted aromatic compound from a 

saturated or partially unsaturated cyclohexane derivative in a one-pot synthesis. Although 

currently this reaction has heavy limitations due to the specific substitution patterns 

needed for successful aromatization, and gives low yields, this approach seems to have 

great promise for an array of specific reactions. In particular, this approach has been 

shown to be applicable for synthesis of hexakis substituted benzene esters.  Since the 

direct synthesis of hexakis substituted benzene esters through the esterification of mellitic 

acid proved to be a challenging synthesis that is too restrictive for our purposes of 

possible chemical amplifiers, the oxidative aromatization has great utility. 

Within Chapter 3 was a discussion of self-immolating chemical linkers.  Three 

parts of chemical linkers were discussed: the trigger, the base, and the chemical cargo.  

Investigations regarding the trigger, and potential applications are ongoing but a fluoride 

sensitive and light sensitive trigger were shown to be appropriate for a proof of concept 

study. The three base systems we discussed were a cis cyclohexane, trans cyclohexane, 

and phthalic (aromatic) system.  All three demonstrated potential for use, however with 

regards to kinetics we found the trans cyclohexane to not meet our target.  The cis 
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cyclohexane was also appropriate from a kinetics point of view, but readily epimerized to 

the trans under certain conditions, so we deemed this system to be “unstable”. Finally in 

regards to the alcohol released, the stability of the conjugate base is the primary factor for 

determining rate of release (assuming neutral pH or within a few pH units of neutral).  

Aromatic alcohols were found to be appropriate, even those with electron donating 

groups, such as p-methoxy phenol, even though these are slower than a molecule without 

electron withdrawing groups or with extended conjugation (such as phenol or 7-hydroxy 

coumarin). 

Finally in chapter 4, the synthesis of the actual amplifier was discussed.  Although 

two routes have shown potential for synthesis, cyclotrimerization and the oxidative 

aromatization discussed in chapter 2, only the oxidative aromatization has so far led to 

successful synthesis of an amplifier (after a high pressure transesterifcation as well). 

This thesis represents a divergent project in an example of a successful synthesis of a 

chemical machine, a chemical amplifier.  Work is ongoing in the characterization of the 

amplifier as well as potential implementation.  Future studies will especially be 

concerned with the trigger and release of possible reporter molecules, for practical 

applications. 
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 SELECTED SUPPORTING SYNTHESIS 

Synthesis of hexakis phenyl benzene-1,2,3,4,5,6-hexacarboxylate: 

cis-1,2,3,4,5,6 cyclohexane hexacarboxylic acid (1g) was added to phosphorus 

pentachloride (4g) and reaction mixture was heated to 140°C and stirred for 1 hour. 

Phenol (10g) was added to reaction mixture and heating was maintained with stirring for 

another 4 hours.  20 mL of 5% w/v sodium bicarbonate in water was added to reaction 

mixture and reaction was refluxed for 3 hours. After cooling, solid was filtered out.  

Recrystalization in THF/hexanes gave pure product. 

 

Synthesis of hexaxis(4-methoxy phenyl) benzene-1,2,3,4,5,6-hexacarboxylate 

(oxidative aromatization): 

cis-1,2,3,4,5,6 cyclohexane hexacarboxylic acid (1g) was added to phosphorus 

pentachloride (4g) and reaction mixture was heated to 140 and stirred for 1 hour. P-

methoxy phenol (13g) was added to reaction mixture and heating was maintained with 

stirring for another 4 hours.  Pyridine (5mL) was added dropwise over 2 hours.  Reaction 

mixture was cooled to room temperature and oil was taken up in methylene chloride.  

Organic layer was washed with copious water and concentrated, yielding a solid 

suspended in viscous oil.  Filtration with a fine borosilicate glass fritted filter yielded 

impure solid product.  Recrystalization in THF/hexanes gave pure product. 

 

Synthesis of hexaxis(4-methoxy phenyl) benzene-1,2,3,4,5,6-hexacarboxylate 

(cyclotrimerization): 100 mg of bis(4-methoxyphenyl) but-2-ynedioate was dissolved in 

10% dioxane/water mixture and was heated to 70 °C.  ~5 mg of dichlorobis(µ-
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chloro)bis[(1,2,3,6,7,8-n)-2,7-dimethyl-2,6-octadien-1,8-diyl] diruthenium (IV) was 

added and the reaction mixture was stirred for 12 hours.  Mixture was filter and aqueous 

solution was collected. Product was extracted with methylene chloride.  Organic layer 

was concentrated giving mostly pure product.  An analytical amount was recrystalized 

from THF/hexanes. 

 

Synthesis of mellitic acid: 

Cis-1,2,3,4,5,6 cyclohexane hexacarboxylic acid (1g), was added to phosphorus 

pentachloride (4g) and reaction mixture was heated to 140 and stirred for 4 hours. 20 mL 

of water was added and mixture was refluxed for one hour.  After cooling, pure, solid 

product was filtered out. 

 

Synthesis of trans- 2-((p-methoxyphenoxy)carbonyl)cyclohexanecarboxylic acid: 

5g of 1,2-cyclohexane, trans anhydride was dissolved in 30 mL of DI water. 5g of p-

methoxy phenol was added and mixture was heated to 35 °C for 30 minutes.  Mixture 

was acidified to pH 1-2 with dilute HCl and mixture was cooled slowly to 5 °C. Pure 

product crystals were collected via vacuum filtration and used without further 

purification.   

 

Synthesis of cis- 2-((p-methoxyphenoxy)carbonyl)cyclohexanecarboxylic acid: 

5g of 1,2-cyclohexane, cis anhydride was dissolved in 30 mL of DI water. 5g of p-

methoxy phenol was added and mixture was heated to 35 °C for 30 minutes.  Mixture 

was acidified to pH 1-2 with dilute HCl and mixture was cooled slowly to 5 °C.  Pure 
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product crystals were collected via vacuum filtration and used without further 

purification. 

 

Synthesis of p-methoxy phenyl hydrogen phthalate: 

5g of 1,2-cyclohexane, cis anhydride was dissolved in 30 mL of DI water. 5g of p-

methoxy phenol was added and mixture was heated to 35 °C for 30 minutes.  Mixture 

was acidified to pH 1-2 with dilute HCl and mixture was cooled slowly to 5 °C.  Pure 

product crystals were collected via vacuum filtration and used without further 

purification. 

 

Synthesis of 4-methoxyphenyl (2-(trimethylsilyl)ethyl) phthalate: 

1.5 g of cis- 2-((p-methoxyphenoxy)carbonyl)cyclohexanecarboxylic acid, 1 mL of 2-

trimethylsilylethanol, and 0.085 g of 4-N,N-Dicyclohexylcarboiimide were dissolved in 4 

mL of dry DMF and stirred until complete solvation was observed. 1.54 g of N,N-

Dicyclohexylcarbodiimide was dissolved in 2 mL of dry DMF and added to the reaction 

mixture.  The reaction was stirred under an argon atmosphere overnight.  The 

dicyclohexylurea biproduct was filtered off.  The solvent was removed under reduced 

pressure.  Purification was done by flash chromatography (Hex/EtOAc 90:10) to give 

pure product as a clear yellow oil. 

 

Synthesis of 1,2-diethyl 3,4,5,6-tetramethyl benzene-1,2,3,4,5,6-hexacarboxylate: 

580 mg of bis(cyclopentadienyl)zirconium dichloride was cooled to -78°C. 2.4 mL of 2.5 

M n-butyl lithium in hexanes was added dropwise and mixture was stirred for 1 hour.  1 
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mL of acetylenedicarboxylate was added and mixture was stirred for 1 hour.  324 mg of 

copper I chloride was added to the flask.  Immediately after, 0.600 mL of diethyl 

acetylene dicarboxylate was added.  Reaction was stirred for 10 hours. 30 mL of .1 M 

HCl was added to the reaction and stirred until heat stopped evolving.  50 mL of water 

was added and product was extracted by ether.  Concentrating the ether gave crude 

product. 

 

Synthesis of 1,2,3,4,5-pentaphenyl 6-(2-(trimethylsilyl)ethyl) benzene-1,2,3,4,5,6-

hexacarboxylate: 

100 mg of the hexakis phenyl benzene 1,2,3,4,5,6 hexa carboxylic acid was dissolved in 

10 mL of chloroform.  100 µL of 2-(trimethylsiyls)ethanol and 16 µL of DBU was added 

and reaction was placed in a pressure vessel.  Reaction was heated to 40 °C, pressurized 

to 200 psi and allowed to proceed for 4 hours.  Chloroform layer was washed with 

copious water.  The organic layer was concentrated down yielding impure product as an 

oil.  Product was placed under a reduced atmosphere (~200 microns) for 2 days to yield a 

yellow, crude product.  1H-NMR revealed expected peaks for a 1:5 amplifier.  Further 

purifications will be done by preparative HPLC. 
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